Title: Smart Sampling Algorithm for Surrogate Model Development

It helps to convert a high-fidelity simulation model into a computationally inexpensive surrogate model that captures its essential features with prescribed numerical accuracy

Surrogate modelling1

  1. Polynomial Surface Response Models (PRSM)
  2. Radial Basis Functions
  3. Support Vector Regression
  4. Artificial Neural Netwroks

Sampling method

Problem Statement

描述了一个实验或者复杂得难以计算的单元、过程或者系统。为了解决这个问题,我们选择替代来代替原有的模型。总的来说,问题如下:

Motivation

Samplling methods

Problem

Key Concepts

Normalize:
这篇文章与Cozad的文章不同之处在于,Cozad的文章主要在于寻找最优的代理模型,而这篇文章的关注点:对于给定的代理模型,怎么选取点是最佳的

Crowding Distance Metric (CDM):
This is the spartial charateristic

Departure Function:
indicates the surrogate model derived from I sample points(i=1,2,…,I)
indicates the surrogate derived from all points except
This is the quality charateristic:

Optimal Points Placement

Define a NLP problem:2

Smart Sampling Algorithm

对于估计模型S(x)至少需要采样个数为P:

example

# The example
x=c(0, 0.35, 0.47, 0.55, 0.69, 1)
y=(6*x-2)^2*sin(12*x-4)

# S(x)=a0+a1*x+a2*x^2+a3*x^3+a4*x^4
inputData<-data.frame("x"=x,"y"=y)
fit4<-lm(y~x+I(x^2)+I(x^3)+I(x^4),data=inputData)
summary(fit4)

# coefficients
coef4<-fit4$coefficients

# define a function to calculate CDM

CDMCalc<-function(x){
CDMValue<-lapply(x,function(x_i){
xi<-rep(x_i,length(x))
return(sum((xi-x)^2))
})
return(unlist(CDMValue))
}

# Calulate CDM
CDMValue<-CDMCalc(x)
orderCDM<-order(CDMValue,decreasing = TRUE)

inputNum<-c(2,3,4,5,6)
inputData6<-inputData[inputNum,]
fit1<-lm(y~x+I(x^2)+I(x^3)+I(x^4),data=inputData6)
coef1<-fit1$coefficients
summary(fit1)

# # Symbolic Computation in R,using rsympy package
# library(Ryacas)
# t<-Sym("t")
#
# tmatrix<-List(List(1,t,t**2,t**3,t**4))
# coef1<-List(coef1)
# dataMatrix<-tmatrix*coef1

  1. 对比文献参见文献第一页
  2. 考虑CCM的选点问题,给定长度进行选点,对于multiple spatial CCM